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Abstract

Aeroelastic stability of a flexible supersonic flight vehicle is considered using nonlinear dynamics, nonlinear

aerodynamics, and a linear structural model. Response surfaces including global multivariate orthogonal modeling

functions are invoked to derive applied nonlinear aerodynamic coefficients. A modified Gram–Schmidt method is

utilized to orthogonalize the produced polynomial multivariate functions, selected and ranked by predicted squared

error metric. Local variation of angle-of-attack and side-slip angle is applied to the analytical model. Identification of

nonlinear aerodynamic coefficients of the flight vehicle is conducted employing a CFD code and the required analytical

model for simulation purposes is constructed. The method is used to determine the aeroelastic instability and response

of a selected flight vehicle.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Investigation of the dynamic behavior of a flexible flight vehicle has been the subject on many research works in the

filed of aeroservoelasticity, which leads to an n-degree of freedom model instead of the 6-degree of freedom models,

using the Lagrangian approach.

Meirovitch and Nelson (1966) investigated the stability of spinning elastic flight vehicles by combining flight and

elasticity equations based on Lagrange’s approach. Considering aeroelastic stability of spinning rockets, Platus (1992)

proved that, in some special cases, structural damping can cause instability in spinning vehicles. He used the linear

slender body theorem to find the lift force distribution on the considered flight vehicle. Elyada (1989) studied the static

aeroelastic instability of non-spinning rockets flying in the plane, just by applying structural effectiveness coefficient in a

closed form, without using all necessary equations. Aeroservoelastic instability of an elastic flight vehicle including the

related control system was discussed by Haddadpour (2006). He derived equations governing rigid and elastic motions

using Lagrange’s method. He also applied slender body theory to find lift force distribution on the vehicle.
e front matter r 2009 Elsevier Ltd. All rights reserved.
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Nomenclature

a,b,c,d Euler parameters

aj jth orthogonal function parameter (coeffi-

cient of jth orthogonal

function in polynomial global model)

A orthogonal function parameter vector

bj jth ordinary polynomial function parameter

B ordinary polynomial function parameter vector

C damping coefficient

Cy side force coefficient

Cz normal force coefficient

D aerodynamic reference diameter and damp-

ing dissipation function

DERR contribution of each orthogonal function

for the reduction of MSE
~e distance vector of each deflected vehicle

point from un-deflected one

E Young’s bending modulus

ERR cumulative sum of DERR
~E distance vector of vehicle center of gravity

from inertial coordinates origin

EI flexural rigidity

fy(x,t), fz(x,t) distributed side forces along y and z

axis

Fx, Fy, Fz force components along x, y and z axis

FTz, FTy, FTx thrust force components along x, y and

z axis

FAz, FAy, FAx aerodynamic force components along

x, y and z axis

GANAM global analytic nonlinear aerodynamic

model

G Young’s torsional modulus

GJ torsional rigidity

Iy, Iz moment of inertia about lateral axes

Ix moment of inertia about longitudinal axis

J section polar moment of inertia and least

squares error cost function

Ji ith torsional equivalent generalized mass

MSE mean squared error

rwk
position of kth wing area element relative to

its root

dAwk
kth wing area element

xwk
distance of kth wing from body-fixed

coordinates origin

xT distance of thrust force application point

from body-fixed coordinates origin

xD distance of resultant aerodynamic force

application point from body-fixed coordi-

nates origin

k wing row identifier

l number of independent variables

la(x) lift force derivative per vehicle length

lb(x) side force derivative per vehicle length

m flight vehicle mass and number of sample times

m(x) vehicle mass per unit length and distributed

moment along longitudinal axis

Mi ith generalized mass

Mx, My, Mz moment components about x, y and z axis

n number of retained orthogonal functions

OFP over fit penalty

pj jth vector orthogonal functions of dimen-

sion m

P m� n matrix of orthogonal functions

PSE predicted squared error

p, q, r angular velocity (~o) components about x, y

and z axis

q̄ dynamic pressure (1
2
rV2)

qi generalized coordinates and ith vector or-

dinary polynomial function of dimension m

Q m� n matrix of ordinary polynomial functions

Qi ith generalized force

rkj orthogonalization scalar, element of matrix R

~r distance vector of each deflected vehicle

point from body-fixed coordinates origin
~r0 distance vector of each un-deflected vehicle

point from body-fixed coordinates origin
~R position vector of each deflected vehicle

point relative to inertial coordinates origin

R orthogonalization matrix

t time

T kinetic energy

u, v, w velocity components along x, y and z axis
~VI velocity vector of flight vehicle relative to

inertial coordinates

xi m-dimensional vector of independent vari-

able i

X m� l matrix of independent variable vectors

yj ith value of dependent variable

ȳ average value of yj

x, y, z body-fixed coordinates

XI, YI, ZI inertial coordinates

Xcg change in center of gravity position

a angle of attack

b angle of side slip

gi, zi, Zi generalized coordinates

dy, dz lateral elastic deflections

z damping ratio

y torsional elastic deflection

yi(x) ith torsional mode shape

mi ith bending mode damping ratio

ni ith torsional mode damping ratio

s real part of S

s0
2 maximum prediction MSE

ji(x) ith bending mode shape

ci ith torsional mode frequency

o angular velocity

oi ith bending mode frequency
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Haddadpour (2006) used modal analysis as well as generalized forces and coordinates to derive the equations of

motion in the time domain and then transformed them into the Laplace domain. Utilizing the Routh criterion, he

derived an analytic equation in order to analyze elastic stability of slender flight vehicles. Nydick and Friedmann (1998)

developed linearized equations of motion using quasi-coordinates to investigate small elastic displacements in pitch and

yaw of a supersonic flight vehicle. They utilized nonlinear piston theory in order to determine the aerodynamic lift force.

Meirovitch and Tuzcu (2001) developed nonlinear equations of motion using quasi-coordinates and characterized them

to implement a computer simulation. They applied strip theory for deriving aerodynamic forces and moments to

achieve high computational speed. To investigate the aeroelastic behavior of flight vehicles, Chae and Hodges (2003)

developed the equations of motion employing the finite element method to analyze structural flexibility as well as

nonlinear slender body and piston theories to derive the aerodynamic forces and moments. Morelli (1995a, b) used

multivariate orthogonal modeling functions to drive aerodynamic force and moment coefficients for an F-16 model

airplane. In another work by the same author (Morelli, 1995a, b), a similar technique was presented to determine the lift

force coefficient using subsonic wind tunnel data for an F-18 HARV airplane and FASER experimental model (Morelli

and DeLoach, 2003). A study of the effectiveness of trailing-edge control surfaces has been made for a rolling wing-

fuselage model by Tang et al. (2004). An experimental model and wind tunnel tests were used to assess the theoretical

results. This theoretical model includes the inherently nonlinear dry friction damping moment that was presented

between the spindle support and the experimental aeroelastic wing model. The research provided new insights into the

transient dynamic behavior and design of an adaptive wing using trailing- and leading-edge control surfaces. Using

flight database for X-29A and X-31A airplanes as well as wind tunnel data for the F-16XL model, applying ordinary

least squares method, Klien et al. (1981) identified the aerodynamic force and moment coefficients. A method was

proposed by Attar and Dowell (2005) for identifying a set of reduced-order nonlinear equations, which described the

structural behavior of aeroelastic configurations. From these equations, zero and nonzero angle of attack flutter and

limit-cycle oscillation data were computed for a 451 delta wing aeroelastic model.

In order to investigate the aeroservoelasticity phenomenon using Chebyshev polynomials and their orthogonal

properties, Dinu et al. (2006) transformed the unsteady generalized aerodynamic force acting on a fly-by-wire aircraft

from reduced frequency domain to the Laplace domain. The mechanism of limit-cycle excitation was investigated for an

aeroelastic system with structural nonlinearities (Dessi and Mastroddi, 2008). The analysis was performed on a

simplified aeroelastic model retaining only two structural modes (first bending and first torsional modes) and with a

simplified description of both unsteady loads due to wing oscillation and external gust excitation. This work deals with

the aeroelastic behavior of a small deformed flight vehicle flying at a high angle of attack. A linear structural model is

used because of small deformations. The vehicle flies at a high angle of attack, so a nonlinear aerodynamic model must

be applied. In this research, integrated equations of motion for an elastic vehicle are developed using Lagrange’s

approach as well as generalized forces and coordinates. The normal modes of the linear structure are used to determine

elastic vibrations. Analytical nonlinear formulations are considered to model the nonlinear aerodynamic force and

moment coefficients using orthogonal modeling polynomials developed based on the extracted database from CFD

runs. The development of a flight simulation code proceeds using the equations of motion and is executed to investigate

aeroelastic stability of a specific supersonic flight vehicle. Finally, the results are verified by comparison with the results

of the study of Elyada (1989) and Haddadpour (2006), demonstrating good compatibility between them.
2. Formulation

The general form of Lagrange’s equation can be expressed as

d

dt

@T

@ _qi

� �
�
@T

@qi

þ
@U

@qi

þ
@D

@ _qi

¼ Qi, (1)

where T is kinetic energy, U is potential energy, D is the Rayleigh dissipation damping function and qi is the ith

generalized coordinate. Lagrange’s equations in body-fixed coordinates are as follows (Meirovitch and Nelson, 1966):

d

dt

@T

@p

� �
� r

@T

@q
þ q

@T

@r
¼Mx;

d

dt

@T

@q

� �
� p

@T

@r
þ r

@T

@p
¼My;

d

dt

@T

@r

� �
� q

@T

@p
þ p

@T

@q
¼Mz;

8>>>>>>>><
>>>>>>>>:

(2)
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d

dt

@T

@u

� �
� r

@T

@v
þ q

@T

@w
¼ Fx;

d

dt

@T

@v

� �
� p

@T

@w
þ r

@T

@u
¼ Fy;

d

dt

@T

@w

� �
� q

@T

@u
þ p

@T

@v
¼ Fz:

8>>>>>>>><
>>>>>>>>:

(3)

In Eqs. (2) and (3), (u, v,w) are linear velocities, (p, q, r) are angular velocities, (Mx, My, Mz) are moments and (Fx, Fy,

Fz) are force components in the body coordinates axis.

Displacements of each element of the vehicle in terms of normal vibration modes are as follows (Bisplinghoff and

Ashley, 1962):

y ¼
Xm

i¼1

yiðxÞgiðtÞ; dy ¼
Xn

i¼1

jiðxÞZiðtÞ; dz ¼
Xp

i¼1

jiðxÞziðtÞ, (4)

where ji(x) is the ith normal bending mode shape, Zi(t) and zi(t) are the corresponding generalized coordinates, yi(x) is

the ith torsion vibration mode, and gi(t) is the corresponding generalized coordinate.

If the vehicle is considered as a beam, the bending vibration modes must satisfy the following differential equation

(Meirovitch, 1986):

d2

dx2
EI

d2

dx2
jiðxÞ

� �
¼ o2

i mðxÞjiðxÞ; i ¼ 1; 2; 3; . . . ; n, (5)

where EI is bending stiffness, m(x) is mass distribution per unit length and oi is the ith bending mode frequency of the

beam. The orthogonality of the vibration modes yieldsZ
L

jiðxÞjjðxÞdm ¼
0 for iaj;

Mi for i ¼ j;

(
(6)

where Mi is the ith generalized mass.

Torsional vibration modes must satisfy the following differential equation (Meirovitch, 1986):

d

dx
GJðxÞ

dyiðxÞ

dx

� �
¼ rðxÞJðxÞc2

i yiðxÞ; i ¼ 1; 2; 3; . . . ; n, (7)

where G is shear modulus, J(x) is polar inertial moment of the section, r(x) is material density of each section, and ci is

the frequency of the ith torsional mode. The orthogonality of the torsional modes leads to:Z
yiðxÞyJ ðxÞJðxÞrðxÞdx ¼

0 for iaj;

Ji for i ¼ j;

(
(8)

where Ji is the correspondent generalized mass.

Referring to Fig. 1, the displacement of each element of the vehicle regarding to the vibration modes will be as

follows:

ex ¼ 0; ey ¼ dy � zyx ¼
Xn

i¼1

ðjiZi � zyigiÞ; ez ¼ dz þ yyx ¼
Xn

i¼1

ðjizi þ yyigiÞ, (9)

where dx, dy, dz are the position vector components of the displaced point after bending, and ex, ey and ez are the

position vector components of the displaced point after torsion.

2.1. Kinetic and potential energies and dissipation function

In Fig. 2, the position vector of each point can be expressed as

~E ¼ ~Rþ~r; ~r ¼~r0 þ~e, (10)

where ~E and ~R are, respectively, the position vectors of center of gravity of the vehicle and each point of the deformed

body in inertial coordinates. Also ~r0 and ~r are the position vectors of each point of the vehicle before and after

deformation in the body-fixed coordinates, respectively.
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Fig. 1. Section of elastic vehicle in body-fixed coordinates.
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Fig. 2. Inertial and body-fixed coordinates.
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The kinetic energy due to rigid and elastic motions is (Meirovitch, 1986)

T ¼
1

2

Z
m

dE

dt

����
I

dE

dt

����
I

dm ¼
1

2
m~VI

~VI þ
1

2
Iðr2 þ q2Þ þ

1

2
Ixp2 þ

1

2
p2 þ

q2 þ r2

2

� �Xn

i¼1

Jig2i þ
1

2

Xn

i¼1

Ji _g

þ
1

2

Xn

i¼1

Mi½_Z2i þ _z
2

i þ p2ðz2i þ Z2i Þ þ ðqzi � rZiÞ
2
� 2pð_Ziz� _ziZiÞ�, (11)

where Ix and I are the vehicle moments of inertia about longitudinal and lateral axis, respectively.

The potential energy of the beam is expressed as

U ¼
1

2

Z
L

EI
@2dy

@x2

� �2

þ
@2dz

@x2

� �2
" #

dxþ
1

2

Z
L

GJ
@y
@x

� �2

dx. (12)
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In terms of the modal parameters the potential energy can be written as

U ¼
1

2

Xn

i¼1

Mio2
i ðZ

2
i þ z2i Þ þ

1

2

Xn

i¼1

Jic
2
i g

2
i . (13)

The Rayleigh dissipation function can be written in terms of the generalized forces and coordinates as follows:

D ¼
1

2

Xn

i¼1

2mioiMið_Z2i þ _z
2

i Þ þ
1

2

Xn

i¼1

2uiciJi _g2i , (14)

where mi and ui are the ith bending and torsion modal damping, respectively. After determination of the kinetic energy,

potential energy and Rayleigh dissipation function, the equations of motion can be obtained as discussed in the next

section.

2.2. Generalized forces

Generalized forces are on the right-hand side of Lagrange’s equations. Assuming that fy(x, t) is the aerodynamic load

distribution on the vehicle in the y direction, the work done due to the virtual displacement dZi can be written as follows:

dW ¼

Z
L

f yðx; tÞ
Xn

i¼1

jiðxÞdZiðtÞdx ¼
Xn

i¼1

dZiðtÞ

Z
L

f yðx; tÞjiðxÞdx. (15)

The relation between the generalized force and the virtual work is as

Qqi
¼
@ðdW Þ

@ðdqiÞ
. (16)

So the generalized forces corresponding to the elastic displacements can be written as

QZi
¼

Z
L

f yðx; tÞjiðxÞdx; Qzi
¼

Z
L

f z x; tð ÞjiðxÞdx; Qgi
¼

Z
L

mxðx; tÞyiðxÞdx; (17,18,19)

where QZi
, Qzi

, and Qgi
are the generalized forces, dW is the virtual work and mx(x, t) is the distributed longitudinal

moment.

2.3. Elastic deformations

Using the equations of kinetic and potential energy as well as the virtual work, substituting them into Lagrange’s

equations and defining Zi, zi, and gi as the generalized coordinates, we obtain

€Zi þ 2mioi _Zi � 2p_zi þ ðo
2
i � p2 � r2ÞZi þ ðqr� _pÞzi ¼

1

Mi

Z
L

f yðx; tÞjiðxÞdx, (20)

€zi þ 2mioi
_zi þ 2p_Zi þ ðo

2
i � p2 � q2Þzi þ ðqrþ _pÞZi ¼

1

Mi

Z
L

f zðx; tÞjiðxÞdx, (21)

€gi þ 2ui _gici þ c2
i � p2 �

q2 þ r2

2

� �
gi ¼

1

Ji

Z
L

mðx; tÞyiðxÞdx. (22)

2.4. Angular velocity equations

Substituting the kinetic energy (Eq. (11)) into Lagrange’s equations for the moments (Eq. (2)) and assuming

Iy ¼ Iz ¼ I, results in

Ix þ
Xn

i¼1

Jig2i þ
Xn

i¼1

MiðZ2i þ z2i Þ

 !
_pþ 2

Xn

i¼1

Jigi _gi þ
Xn

i¼1

Miðzi
_zi þ Zi _ZiÞ

 !
p

�
Xn

i¼1

Mi½ð€Zizi �
€ziZiÞ þ ðqZi � rziÞðqzi � rZiÞ� ¼Mx, (23)
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I � Im þ
Xn

i¼1

Miz
2
i þ

1

2

Xn

i¼1

Jig2i

 !
_qþ pr Ix � I þ

Xn

i¼1

Miz
2
i þ

1

2

Xn

i¼1

Jig2i

 !

þ pq� _rð Þ
Xn

i¼1

MiziZi þ 2q
Xn

i¼1

Mizi
_zi � 2r

Xn

i¼1

Mizi _Zi þ q
Xn

i¼1

Jigi _gi ¼My, (24)

I � Im þ
Xn

i¼1

MiZ2i þ
Xn

i¼1

Jig2i

 !
þ pq I � Ix �

Xn

i¼1

MiZ2i �
1

2

Xn

i¼1

Jig2i

 !

� ðprþ _qÞ
Xn

i¼1

MiZizi þ 2r
Xn

i¼1

MiZi _Zi � 2q
Xn

i¼1

Mi
_ziZi þ r

Xn

i¼1

Jigi _gi ¼Mz, (25)

where Im ¼ mX 2
cg is due to displacement of instantaneous center of gravity relative to the origin of body-fixed

coordinate.

2.5. Equations of angle of attack

Similarly, for the angles of attack, substituting the kinetic energy (Eq. (11)) into Lagrange’s equations for the forces

(Eq. (3)), results in

mð _uþ qw� rvÞ ¼ Fexb; mð_vþ ru� pwÞ ¼ Feyb; mð _wþ pv� quÞ ¼ Fezb. (26)

The forces in the right-hand side of Eq. (26) are derived in the body-fixed coordinate system.

2.6. Moment equations

Moments on the right-hand side of Eqs. (23)–(25) are summations of the external moments due to the aerodynamic

lift and thrust forces and can be computed as follows:

Mx ¼ �
Xm

k¼1

Xn

i¼1

Z
Awk

lawk
ðrwk
Þ þ lbwk

ðrwk
Þ

� �
rwk
½pþ _giðtÞyiðxwk

Þ�dAwk
, (27)

My ¼ �

Z
xlaðxÞaðx; tÞdxþ

Xn

i¼1

xwk
laðxwk

Þaðxwk
; tÞ þ FTx

Xn

i¼1

ziðtÞjiðxT Þ

� FTxxT

Xn

i¼1

ziðtÞj
0
iðxT Þ þ FAx

Xn

i¼1

ziðtÞjiðxDÞ, (28)

Mz ¼ �

Z
xlbðxÞbðx; tÞdx�

Xm

k¼1

xwk
lbðxwk

Þbðxwk
; tÞ � FTx

Xn

i¼1

ZiðtÞjiðxiÞ

� FTxxT

Xn

i¼1

ZiðtÞj
0
iðxT Þ � FAx

Xn

i¼1

ZiðtÞjiðxDÞ. (29)

2.7. Force equations

Forces on the right-hand side of Eqs. (26) are summations of the aerodynamic lift and thrust forces and are expressed

as

Fexb ¼ FTx þ FAx; (30)

Feyb ¼ �

Z
lbðxÞbðx; tÞdx�

Xm

k¼1

lbwk
bðxwk

; tÞ þ FTx

Xn

i¼1

ZiðtÞj
0
iðxT Þ þ FAx

Xn

i¼1

ZiðtÞj
0
iðxDÞ, (31)

Fezb ¼ �

Z
laðxÞaðx; tÞdx�

Xm

k¼1

lawk
aðxwk

; tÞ þ FTx

Xn

i¼1

ziðtÞj
0
iðxT Þ þ FAx

Xn

i¼1

ziðtÞj
0
iðxDÞ. (32)
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2.8. Aeroelastic deflections

Considering Eqs. (17)–(19) and using Eqs. (30)–(32), the generalized forces corresponding to the elastic deflections are

derived as follows:Z
mðx; tÞyiðxÞdx ¼ �

Xm

k¼1

Xn

i¼1

yiðxwk
Þ

Z
Awk

½lawk
ðrwk
Þ þ lbwk

ðrwk
Þ�rwk
½pþ _giðtÞyiðxÞ�dAwk

, (33)

Z
f yðx; tÞjiðxÞdx ¼ �

Z
L

lbðxÞbðx; tÞjiðxÞdx�
Xm

k¼1

Xn

i¼1

lbðxwk
; tÞjiðxwk

Þ

þ FTx

Xn

i¼1

ZiðtÞj
0
iðxT ÞjiðxT Þ þ FAx

Xn

i¼1

ZiðtÞj
0
iðxDÞjiðxDÞ, (34)

Z
f zðx; tÞjiðxÞdx ¼ �

Z
L

laðxÞaðx; tÞjiðxÞdx�
Xm

k¼1

Xn

i¼1

laðxwk
; tÞjiðxwk

Þ

þ FTx

Xn

i¼1

ziðtÞj
0
iðxT ÞjiðxT Þ þ FAx

Xn

i¼1

ziðtÞj
0
iðxDÞjiðxDÞ. (35)

Expansion of a(x, t) and b(x, t) over the length of the vehicle, and also expansion of aðxwk
; tÞ and bðxwk

; tÞ at the
location of the wings are as follows:

aðx; tÞ ¼ a0 �
Xn

i¼1

ziðtÞj
0
iðxÞ þ

1

u

Xn

i¼1

_ziðtÞjiðxÞ �
q

u
x,

bðx; tÞ ¼ b0 �
Xn

i¼1

ZiðtÞj
0
iðxÞ þ

1

u

Xn

i¼1

_ZiðtÞjjðxÞ �
r

u
x, (36)

aðxwk
; tÞ ¼ a0wk

�
Xn

i¼1

ziðtÞj
0
iðxwk
Þ þ

1

u

Xn

i¼1

_ziðtÞjiðxwk
Þ �

q

u
xwk

,

bðxwk
; tÞ ¼ b0wk

�
Xn

i¼1

ZiðtÞj
0
iðxwk
Þ þ

1

u

Xn

i¼1

_ZiðtÞjiðxwk
Þ �

r

u
xwk

.

Assuming la(x) ¼ lb(x), the following parameters are defined as follows:Z
L

laðxÞjiðxÞdx ¼

Z
L

xlaðxÞjiðxÞdx ¼ I i
1;

Z
L

xlaðxÞjiðxÞdx ¼

Z
L

xlbðxÞjiðxÞdx ¼ I i
2,Z

L

laðxÞj0iðxÞdx ¼

Z
L

lbðxÞj0iðxÞdx ¼ I i
3;

Z
L

xlaðxÞj0iðxÞdx ¼

Z
L

xlbðxÞj0iðxÞÞdx ¼ I i
4,Z

L

laðxÞj2
i ðxÞÞdx ¼

Z
L

lbðxÞj2
i ðxÞÞdx ¼ I i

5;

Z
L

laðxÞjiðxÞj
0
iðxÞdx ¼

Z
L

lbðxÞjiðxÞj
0
iðxÞdx ¼ I i

6. (37)

The above parameters will be used in the compact form of the governing equations of motion.

2.9. Nonlinear aerodynamic modeling

To complete the equations of motion, it is necessary to derive the nonlinear aerodynamic forces and moments.

A modeling technique based on the multivariate orthogonal functions is used to develop an accurate analytical model in

order to determine aerodynamic coefficients (Morelli, 1995a, 1995b; Morelli and DeLoach, 2003). The required

database for developing the model is produced using the CFD method. Each of the aerodynamic coefficients as a

dependent variable is determined by using a model including independent variables. Parameters of the model are

derived using the least-squares regression method. The model structure is determined by setting the terms of the

polynomials and giving priority to them based on the predicted squared error (PSE) metric. The mathematical

procedure for deriving multivariate modeling functions will be discussed here. To determine the model structure, an

m-dimensional vector of aerodynamic coefficients, as dependent variable values, such as Y ¼ [y1, y2,y, ym]
T is assumed
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and modeled in terms of a linear combination of n modeling functions pj, j ¼ 1,2,y, n. Each pj is an m-dimensional

vector depended on X ¼ [x1, x2,y, xk] and each xi is an m� 1 vector of the ith independent aerodynamic variable. In

the following development, dependence of pj on xis not explicitly shown in the notation. Then,

y ¼ a1p1 þ a2p2 þ � � � þ anpn þ �, (38)

where vector A with components aj, j ¼ 1,2,y, n, includes constant model parameters which should be determined, and

e is the modeling error vector. Defining the vector P ¼ [p1,p2,y, pn], where P is an m� n matrix, and

A ¼ [a1,a2,y, an]
T, Eq. (38) can be written in matrix form as

Y ¼ PAþ �. (39)

The error vector e should be minimized using the least-squares regression method. The problem is to find a vector A so

that it can minimize the following cost function:

J ¼ ðY � PAÞTðY � PAÞ ¼ �T�. (40)

The constant-parameter vector, which minimizes the cost function can be estimated using

Â ¼ ½PTP��1PTY . (41)

If the ordinary polynomials in the columns of P are nearly linearly dependent, then Eq. (41) will give erroneous

estimates of Â due to ill-conditioning of matrix PTP. The orthogonality of P would have two benefits. Firstly, PTP

would be a diagonal matrix, and the ill-conditioning problem of inverting would be solved. Secondly, the least-squares

problem would be decoupled, because each row of Eq. (41) could be solved independently. So, it is required to factorize

P into two matrices Q and R, where Q ¼ [q1, q2,y, qn] is an m� n orthogonal matrix and R ¼ [r1,r2,y, rn] is an upper

triangular n� n matrix with ones on the diagonal:

P ¼ QR; Ŷ ¼ PÂ ¼ QRÂ, (42,43)

B̂ ¼ RÂ; Â ¼ R�1B̂; Ŷ ¼ QB̂. (44,45,46)

Now the problem changes to finding the vector B, which minimizes the cost function

J ¼ Y �QBð Þ
T Y �QBð Þ ¼ �T�. (47)

The constant-parameter vector, which minimizes the cost function, can be estimated using the following equation:

B̂ ¼ ½QTQ��1QTY . (48)

In this situation, each of terms b̂j , could be determined using the orthogonality condition:

qTi qj ¼ 0; iaj; i; j ¼ 1; 2; . . . ; n. (49)

Considering the equation

b̂j ¼ ðq
T
j Y Þ=ðqTj qjÞ, (50)

indicates that when columns of Q are orthogonal; b̂j depends only on the measured value of dependent variable or

aerodynamic coefficient and its corresponding orthogonal function qj. Therefore, the model structure could be

determined using the contribution of each qj on the reduction of cost J. In this situation, the estimated cost function

could be calculated by

Ĵ ¼ YTY �
Xn

j¼1

ðpTj Y Þ2=ðpTj pjÞ, (51)

where DERRj ¼ (pj
TY)2/(pj

Tpj) represents the contribution of each term on minimizing the predicted squared error, and

ERR denotes the sum
P

j ¼ 1
n DERRj.

The orthogonal functions to be included in the model should be determined based on the contribution of them in

minimizing the predicted squared error given in the following equation:

PSE ¼MSEþOFP, (52)
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where

PSE ¼ ðĴ=mÞ þ ks20ðn=mÞ, (53)

s20 ¼
1

m

Xm

i¼1

ðyi � ȳÞ2; ȳ ¼
1

m

Xm

i¼1

yi. (54,55)

Eq. (53) indicates that PSE depends on the mean squared error MSE, ðĴ=mÞ, and on a term proportional to the total

number of terms in the model, n. The OFP or ks0
2(n/m) increases by increasing n, and makes the model complex, where

MSE decreases by adding each term. Trade-off between these two parameters results in an optimum number of terms,

which makes the PSE minimum. It should be mentioned that k must be varied from 9 to 100 to achieve the best fit to the

data. To produce the modeling functions matrix P, it is necessary to determine the arrangement of the terms. For

example, one common rule for arranging the two variable aerodynamic coefficients with maximum power of k is as

follows (Meyer, 1991):

Cða; bÞ ¼
Xiþjepk

i¼0

X
j¼0

bi;jaibj . (56)

After determining the matrix P and choosing the optimum number of the terms with the aid of PSE metric, it is

necessary to find the ranking of the columns by using Error Reduction Index (ERI). ERI is used to rank the orthogonal

functions according to their contribution in reducing MSE.

Different techniques are used to produce orthogonal modeling functions. In this research, a two-step procedure based

on the Gram–Schmidt orthogonalization method is used (Giraud and Langou, 2002, 2005; Gallivan, 2006). At the first

step, modeling functions including independent aerodynamic variables are produced and at the second step, they are

orthogonalized using the Gram–Schmidt method.

The orthogonalization process starts with (Morelli, 1995a, b; Morelli and DeLoach, 2003)

p1 ¼ q1, (57)

where q1 is one of the ordinary polynomial multivariate functions chosen as the first orthogonal function. Usually, q1 is a

m� 1 vector of ones. For making each of columns pj orthogonal to the preceding orthogonal functions, it must be assumed:

pj ¼ qj �
Xj�1
k¼1

rkjpk; j ¼ 2; 3; : . . . ; n, (58)

where rkj are scalars determined by

rkj ¼
pT

k qj

pT
k pk

; k ¼ 1; 2; . . . ; ðj � 1Þ; j ¼ 2; 3; : . . . ; n. (59)

3. Summary of equations

In order to track the path of the vehicle, the translational equations of motion of the vehicle must be transferred from

body-fixed coordinate system to inertial coordinate system by using a transfer function for transferring ~FB to ~FI as

follows:

~FI ¼ CI
B
~FB. (60)

Using Euler parameters one can write CI
B as follows:

CI
B ¼

a2 þ b2 þ c2 � d2 2ðbc� adÞ 2ðacþ bdÞ

2ðad þ bcÞ a2 � b2 þ c2 � d2 2ðcd � abÞ

2ðdb� acÞ 2ðabþ cdÞ a2 � b2 � c2 þ d2

2
64

3
75, (61)

where a, b, c and d, are the Euler parameters (quaternions), are defined as:

a ¼ cos
d
2

� �
; ~r ¼

b

c

d

2
64

3
75 ¼ sin

d
2

� �
~ud, (62)
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where~ud is the unit vector on the axis of rotation and d is the magnitude of rotation. Also we have the following relation

between the Euler parameters which adds an equation for determining the redundant variable:

a2 þ h~r;~ri ¼ a2 þ b2 þ c2 þ d2
¼ cos2

d
2

� �
þ sin2

d
2

� �
¼ 1. (63)

By using the above definitions for driving forces in inertial coordinates we shall have

FxI

FyI

FzI

2
64

3
75 ¼ CI

B

Fexb

Feyb

Fezb

2
64

3
75þ

FGx

FGy

FGz

2
64

3
75. (64)

Finally, the state differential equations will be as follows:

_X ðtÞ ¼ VX ; _Y ðtÞ ¼ VY ; _ZðtÞ ¼ VZ, (65)

_VxðtÞ ¼ FxI=m; _VyðtÞ ¼ FyI=m; _VzðtÞ ¼ FzI=m, (66)

_pðtÞ ¼ MAx þMTx þ
Xm

k¼1

Xn

i¼1

lPwk
_giðtÞyiðxwk

Þ

" #,
Ix, (67)

_qðtÞ ¼ MAy þ ðI � Ix � ImÞprþMTy � qFJ2 þ X cgFezb � I i
4

Xn

i¼1

ziðtÞ þ
1

u
Ii
2

Xn

i¼1

_ziðtÞ

"

�
Xm

k¼1

Xn

i¼1

xwk
lawk
ðxwk
Þj0iðxwk

ÞziðtÞ þ
1

u

Xm

k¼1

Xn

i¼1

xwk
lawk
ðxwk
Þjiðxwk

Þ_ziðtÞ

þ
Xn

i¼1

ziðtÞjiðxT ÞFTx �
Xn

i¼1

ziðtÞj
0
iðxT ÞxT FTx þ

Xn

i¼1

ziðtÞjiðxDÞ FAx

#,
ðI � ImÞ, (68)

_rðtÞ ¼ MAz þ ðIx � I þ ImÞpqþMTz � rFJ2 þ X cgFezb þ I i
4

Xn

i¼1

ZiðtÞ �
1

u
Ii
2

Xn

i¼1

_ZiðtÞ

"

þ
Xm

k¼1

Xn

i¼1

xwk
lbwk
ðxwk
Þj0iðxwk

ÞZiðtÞ �
1

u

Xm

k¼1

Xn

i¼1

xwk
lbwk
ðxwk
Þjiðxwk

Þ_ZiðtÞ

�
Xn

i¼1

ZiðtÞjiðxT ÞFTx þ
Xn

i¼1

ZiðtÞj
0
iðxT Þ xT FTðxÞ �

Xn

i¼1

ZiðtÞjiðxDÞFAx

#,
ðI � ImÞ, (69)

€ziðtÞ ¼
1

Mi

�a0I i
1 þ

Xn

i¼1

ziðtÞI
i
6 �

1

u

Xn

i¼1

_ziðtÞI
i
5 þ

q

u
I i
2 �

Xm

k¼1

Xn

i¼1

lawk
ðxwk
Þa0wk

jiðxwk
Þ

"

þ
Xm

k¼1

Xn

i¼1

lawk
ðxwk
ÞjiðxÞj

0
iðxÞziðtÞ �

1

u

Xm

k¼1

Xn

i¼1

lawk
ðxwk
Þj2

i ðxwk
Þ_ziðtÞ

þ
q

u

Xm

k¼1

Xn

i¼1

xwk
lawk
ðxwk
Þjiðxwk

Þ þ
Xn

i¼1

ziðtÞjiðxT Þj0ðxT ÞFTx

þ
Xn

i¼1

ziðtÞjiðxDÞj0ðxDÞFAx

#
� 2mioi

_ziðtÞ � 2p_ZðtÞ � ðo2
i � p2ÞziðtÞ, (70)
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€ZiðtÞ ¼
1

Mi

�b0I i
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Xn

i¼1

ZiðtÞI
i
6

"
�
1

u

Xn
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_ZiðtÞI
i
5 þ

r

u
I i
2 �
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Xn
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lbwk
ðxwk
Þb0wk

jiðxwk
Þ

þ
Xm

k¼1

Xn

i¼1

lbwk
ðxwk
ÞjiðxÞj

0
iðxÞZiðtÞ �

1

u

Xm

k¼1

Xn

i¼1

lbwk
ðxwk
Þj2

i ðxwk
Þ_ZiðtÞ

þ
r

u

Xm

k¼1

Xn

i¼1

xwk
lbwk
ðxwk
Þjiðxwk

Þ þ
Xn

i¼1

ZiðtÞjiðxT Þj0iðxT ÞFTx þ
Xn

i¼1

ZiðtÞjiðxT Þj0iðxT ÞFTx

þ
Xn

i¼1

ZiðtÞjiðxDÞj0iðxDÞFAx

#
� 2mioi _ZiðtÞ � 2p_ziðtÞ � ðo

2
i � p2ÞZiðtÞ, (71)

€giðtÞ ¼
1

Ji

MAx þ
Xm

k¼1

Xn

i¼1

lpwk
y2i ðxwk

Þ_gðtÞ

" #
� 2uici _gðtÞ � ðc

2
i � p2ÞgiðtÞ, (72)
Table 1

Number of the terms included in the model for (CX)motor-on.

N Term MSE OFP PSE J-hat ERR

1 1 0.001612 0.000033 0.001645 2.349650 85.525373

2 M 0.000232 0.000066 0.000298 0.337939 87.537085

3 M3 0.000184 0.000099 0.000284 0.268659 87.606365

4 M2
0.000071 0.000133 0.000203 0.103312 87.771712

5 a2M 0.000069 0.000166 0.000235 0.101219 87.773805

6 abM 0.000068 0.000199 0.000267 0.099861 87.775162

7 b2M 0.000068 0.000232 0.000300 0.098969 87.776055

8 a2 0.000064 0.000265 0.000330 0.093660 87.781364

9 ab 0.000062 0.000298 0.000361 0.090979 87.784045

10 b2 0.000061 0.000332 0.000393 0.089628 87.785396
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Fig. 5. MSE, OFP, PSE versus number of functions for (CX)motor-off.
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Table 3

Number of the terms included in the model for CY.

n Term MSE OFP PSE J-hat ERR

1 b 0.053009 0.001940 0.054950 77.287366 1985.133963

2 a 0.048599 0.003881 0.052480 70.857963 1991.563366

3 bM 0.024507 0.005821 0.030329 35.732001 2026.689329

4 aM 0.023574 0.007762 0.031336 34.371305 2028.050024

5 ab2 0.023458 0.009702 0.033160 34.202383 2028.218946

6 aM2 0.022786 0.011642 0.034429 33.222155 2029.199174

7 bM2 0.022282 0.013583 0.035864 32.486638 2029.934691

8 ob3 0.020616 0.015523 0.036140 30.058802 2032.362527

9 oa3 0.020223 0.017464 0.037686 29.484693 2032.936636

10 a2b 0.019829 0.019404 0.039233 28.910805 2033.510524

Table 2

Number of the terms included in the model for (CX)motor-off.

n Term MSE OFP PSE J-hat ERR

1 1 0.006680 0.000092 0.006771 9.739185 196.288932

2 M 0.001616 0.000183 0.001799 2.356333 203.671784

3 M3 0.001308 0.000275 0.001583 1.907431 204.120686

4 M2
0.000496 0.000367 0.000863 0.723770 205.304347

5 a2M 0.000495 0.000458 0.000953 0.721686 205.306431

6 abM 0.000494 0.000550 0.001044 0.720330 205.307787

7 b2M 0.000493 0.000641 0.001135 0.719446 205.308671

8 a2 0.000490 0.000733 0.001223 0.714145 205.313972

9 ab 0.000488 0.000825 0.001313 0.711463 205.316654

10 b2 0.000497 0.000916 0.001403 0.710119 205.317999

M. Fathi Jegarkandi et al. / Journal of Fluids and Structures 25 (2009) 1079–11011092
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_aðtÞ ¼ �
1

2
½bðtÞpðtÞ þ cðtÞqðtÞ þ dðtÞrðtÞ�; _bðtÞ ¼

1

2
½aðtÞpðtÞ þ cðtÞrðtÞ � dðtÞqðtÞ�, (73,74)

_cðtÞ ¼
1

2
½aðtÞqðtÞ � bðtÞrðtÞ þ dðtÞpðtÞ�; _dðtÞ ¼

1

2
½aðtÞrðtÞ þ bðtÞqðtÞ � cðtÞpðtÞ�. (75,76)

The above nonlinear equations define flight vehicle motions. By solving the equations using the fourth-order

Runge–Kutta method, positions as well as angular and linear velocities and accelerations of the flight vehicle will be

determined.
4. Results

In order to verify the approach used, we made aeroservoelastic calculations for some test cases. The first case was

generated by applying GANAM to the data produced from CFD code for ‘vehicle A’ (Elyada, 1989; Haddadpour,

2006), as presented in Fig. 3.
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Fig. 7. MSE, OFP, PSE versus number of functions for CZ.

Table 4

Number of the terms included in the model for CZ.

n Term MSE OFP PSE J-hat ERR

1 a 0.053009 0.001940 0.054950 77.287345 1985.134355

2 aM 0.028920 0.003881 0.032801 42.165587 2020.256113

3 b 0.024508 0.005821 0.030329 35.731992 2026.689708

4 a3 0.022939 0.007762 0.030701 33.445104 2028.976596

5 aM2 0.021768 0.009702 0.031470 31.737914 2030.683786

6 bM 0.020835 0.011642 0.032447 30.376861 2032.044840

7 ab2 0.020175 0.013583 0.033758 29.415063 2033.006638

8 a2b 0.019837 0.015523 0.035360 28.922722 2033.498979

9 bM2 0.019831 0.017464 0.037295 28.913622 2033.508078

10 b3 0.019829 0.019404 0.039233 28.910851 2033.510850
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The aerodynamic force and moment coefficients are derived as follows. The (CX)motor-on coefficient is used to

compute the axial aerodynamic force during the powered flight of the vehicle. The numerical values of the model, fitting

errors, MSE, OFP, and PSE for the coefficient (CX)motor-on, are given in Table 1. ERR represents the contribution of the

total number of terms in MSE reduction. Variations of MSE, OFP, and PSE versus the number of used orthogonal

modeling functions for the coefficient (CX)motor-on are plotted in Fig. 4. This model is considered with a maximum

power of three. So, the total number of the functions used will be 20. However, just the first 10 terms are ranked in

Table 1. As indicated in Table 1 and Fig. 4, just four terms are enough to minimize PSE metric for the model. The

resultant GANAM for this coefficient would be as follows:

ðCX Þmotor�on ¼ 0:2650þ 0:0402M þ 0:0032M3 � 0:0285M2. (77)

The Coefficient (CX)motor-off is used to compute the axial aerodynamic force during powered flight of the vehicle.

Numerical values of MSE, OFP, and PSE for the coefficient (CX)motor-off are shown in Table 2. Variations of MSE,

OFP, and PSE versus the number of used orthogonal modeling functions for the coefficient (CX)motor-off are plotted in

Fig. 5. Just the first 10 terms of the model are ranked in Table 2. The resultant GANAM for this coefficient would be as

follows:

ðCX Þmotor-off ¼ 0:3757þ 0:1323M þ 0:0087M3 � 0:0762M2. (78)
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Fig. 8. MSE, OFP, PSE versus number of functions for CY.

Table 5

Number of the terms included in the model for Cl.

n Term MSE OFP PSE J-hat ERR

1 a2 0.003939 0.000157 0.004096 5.743398 0.936591

2 ab 0.002681 0.000314 0.002995 3.908571 2.771418

3 b2 0.001868 0.000471 0.002340 2.723926 3.956063

4 a2M 0.001840 0.000628 0.002469 2.682938 3.997051

5 abM 0.001785 0.000786 0.002571 2.602501 4.077488

6 b2M 0.001749 0.000943 0.002692 2.550651 4.129338

7 aM 0.001749 0.001100 0.002849 2.550651 4.129338

8 a 0.001749 0.001257 0.003006 2.550651 4.129338

9 M3 0.001749 0.001414 0.003163 2.550651 4.129338

10 1 0.001749 0.001571 0.003321 2.550651 4.129338
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Table 3 shows the numerical values of MSE, OFP, and PSE for the coefficient CY. Variations of MSE, OFP, and PSE

versus the number of used orthogonal modeling functions for the coefficient CY are plotted in Fig. 6. Just the first 10

terms of the model are ranked in Table 3. It can be seen from the model that, for this special symmetric vehicle, the

coefficient CY vanishes at zero angles of attack and side slip. The resultant GANAM for this coefficient would be as

follows:

CY ¼ �17:3014bþ 1:1288aþ 1:1980bM. (79)

The numerical values of MSE, OFP, and PSE for the coefficient CZ are shown in Table 4. Variations of MSE, OFP,

and PSE versus the number of used orthogonal modeling functions for the coefficient CZ have been plotted in Fig. 7. By

considering symmetry about Y and Z axis, and replacing a by b and vice versa in the model of CY, this method gives the

same model for CZ but with opposite sign for the fitting error parameters and polynomial coefficients.

This model is considered with maximum power of three. So, the total number of the functions will be twenty.

However, just the first 10 terms are ranked in Table 4.
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Fig. 9. MSE, OFP, PSE versus number of functions for Cm.

Table 6

Number of the terms included in the model for Cm.

n Term MSE OFP PSE J-hat ERR

1 a 12.551626 0.195724 12.747350 18300.270864 23306.037312

2 aM 3.265579 0.391448 3.657027 4761.214871 36845.093305

3 b 2.653936 0.587172 3.241109 3869.440116 37736.868060

4 ab2
2.331716 0.782896 3.114613 3399.642617 38206.665559

5 a2b 2.292623 0.978620 3.271243 3342.644298 38263.663878

6 aM2 2.136189 1.174344 3.310533 3114.563265 38491.744911

7 bM 2.092422 1.370068 3.462490 3050.751689 38555.556487

8 a3 2.085054 1.565792 3.650846 3040.008367 38566.299809

9 bM2 2.082262 1.761516 3.844423 3036.877404 38569.430772

10 b3 2.610216 1.957240 4.039502 3035.937732 38570.370444
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As can be seen from Table 4 and Fig. 7, three terms are enough to minimize PSE metric for the model. The resultant

GANAM for this coefficient would be as follows:

CZ ¼ 17:3014a� 1:1980aM � 1:1288b. (80)

The numerical values of MSE, OFP, and PSE for the coefficient CY are shown in Table 5. Variations of MSE, OFP,

and PSE have been plotted in Fig. 8. Just the first 10 terms of the model are ranked in Table 5. As can be seen in Table 5

and Fig. 8, three terms are enough to minimize PSE metric for the model. However, the simplest model is achieved by

trying with two terms and ignoring the second term because of its small effect. The resultant GANAM for this

coefficient would be as follows:

Cl ¼ 5:6289a2 � 5:6289b2. (81)

For the coefficient Cm, the numerical values of MSE, OFP, and PSE are shown in Table 6. Variations of MSE, OFP,

and PSE versus number of orthogonal modeling functions for Cm have been plotted in Fig. 9. Just the first 10 terms are
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Fig. 10. MSE, OFP, PSE versus number of functions for Cn.

Table 7

Number of the terms included in the model for Cn.

n Term MSE OFP PSE J-hat ERR

1 b 12.551627 0.195724 12.747351 18300.272431 23306.033282

2 bM 3.265582 0.391448 3.657030 4761.218057 36845.087656

3 a 2.653938 0.587172 3.241111 3869.442325 37736.863838

4 aM 2.610218 0.782896 3.393114 3805.697389 37800.608323

5 a3 2.439302 0.978620 3.417922 3556.501887 38049.803825

6 a2b 2.276409 1.174344 3.450753 3319.003909 38287.301803

7 aM2 2.179049 1.370068 3.549117 3177.053791 38429.251922

8 bM2 2.117844 1.565792 3.683637 3087.817227 38518.488485

9 b2 2.089814 1.761516 3.851330 3046.948501 38559.357211

10 b3 2.082263 1.957240 4.039503 3035.939383 38570.366330
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ranked in Table 6. The resultant analytical global nonlinear model for this coefficient would be as follows:

Cm ¼ �105:8426aþ 23:5200aM þ 13:2895b. (82)

The numerical values of MSE, OFP, and PSE for the coefficient Cn have been shown in Table 7 showing only the first

ten terms. Variations of MSE, OFP, and PSE versus number of orthogonal modeling functions for the coefficient Cn

have been plotted in Fig. 10. In this case, again, by considering the vehicle symmetry about Y and Z axis, and replacing

a by b and vice versa, the method gives the same model for Cn but with opposite sign in parameters and polynomial

coefficients of Cm. The resultant GANAM for this coefficient would be as follows:

Cn ¼ 105:8426b� 23:5200bM � 13:2895a. (83)

To avoid repetition of similar sentences, maximum power of the modeling functions, total number of the terms, and

minimum number of the functions required for minimizing PSE metric for each coefficient are summarized in Table 8.

After completing the modeling procedure and deriving coupled equations of flight dynamics, aeroelasticity and

GANAM, and aeroelastic flight simulation is executed for ‘vehicle A’. Results of flight simulation for the vehicle are

shown in Figs. 11–15.
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Fig. 11. Angle of attack for rigid and elastic vehicles.

Table 8

Maximum power, total number of terms in the model and minimum number of the functions required for minimizing PSE.

Coefficient Maximum power Total number Minimum number

(CX)motor-on 3 20 4

(CX)motor-off 3 20 4

CY 3 20 3

CZ 3 20 3

Cl 3 20 2

Cm 3 20 3

Cn 3 20 3
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Fig. 12. Angle of side slip for rigid and elastic vehicles.
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Fig. 13. Pitch angular velocity for rigid and elastic vehicles.
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Variations in the angle of attack for rigid and elastic vehicles are shown in Fig. 11. As the figure obviously indicates,

the oscillation amplitude of the angle of attack increases in the elastic case and the vehicle diverges from its flight path.

Structural flexibility decreases the static margin from about 2.12D to zero and consequently decreases the static stability
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Fig. 14. Yaw angular velocity for rigid and elastic vehicles.
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Fig. 15. Dynamic pressure for rigid and elastic vehicles.

Table 9

Comparison table for dynamic pressures equivalent to aeroelastic instabilities.

Vehicle qdiv (N/m2) Reference

Test Case A 1.149� 106 Elyada (1989)

Test Case A 1.087� 106 Haddadpour (2006)

Test Case A 1.013� 106 Present work

M. Fathi Jegarkandi et al. / Journal of Fluids and Structures 25 (2009) 1079–1101 1099
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of the vehicle. This behavior of the vehicle is known as an aeroelastic static instability. The same situation for side-slip

angle variations versus time can be seen in Fig. 11. In elastic case, the angle of side slip starts fluctuating about rigid

stable state and consequently, the vehicle diverges. This phenomenon indicates that the vehicle becomes statically

unstable. Pitch angular rates in rigid and elastic cases are shown and compared in Fig. 13. As the figure obviously

indicates, the amplitude of oscillations in pitch angular rate increases until the flight vehicle becomes statically unstable

and diverges. Obviously, the same behavior can be seen for yaw angular rates of rigid and elastic vehicles in Fig. 14.

The curves of dynamic pressure variations versus time for both cases have been shown in Fig. 15. As can be seen in

the figure, either static instability in flight vehicle or increasing drag force, decreases the dynamic pressure of elastic

vehicle. In Table 9, the resultant divergence dynamic pressure of the vehicle, investigated in this research, has been

compared with the related values from Elyada (1989) and Haddadpour (2006).
5. Conclusions

Equations of elastic motion for a flexible flight vehicle were derived and integrated with the equations of rigid

motions. Aerodynamic force and moment coefficients were also determined using the response surface modeling with

global nonlinear multivariate orthogonal functions. A database for this work was produced by using a CFD code. The

resulting nonlinear analytical formulations for aerodynamic coefficients were used in the equations of motion. In order

to develop elastic forces and moments and based on the small elastic deformations, the lift force distribution along the

length of the vehicle was considered linear with respect to the single variable a, but nonlinear configurations of all other
aerodynamic force and moment coefficients were considered. The n-degree of freedom equations of motion were solved

in a prepared flight simulation code by running it for a specific flight vehicle. The results were presented in different

tables and graphs. The process of flight simulation is done for unpowered and powered flight conditions for the

investigated vehicle in this research. The quantities presented in Elyada (1989) and Haddadpour (2006), such as mass,

static margin, dynamic pressure, etc., could be achieved with the model. It was shown that the resultant divergence

dynamic pressure coincides with the results of other investigators with a reasonable accuracy. Also from flight

simulation results, it is concluded that the elasticity effect causes reduction in static margin and loss of flight static

stability.
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